Check the last "Image of the month"


April 2016


Antiparallel coupling in Co/Cu multilayered nanowire:

a) Hologram obtained by perform electron holography in Co/Cu multilayered nanowire.

b) Magnetic flux line.

c) EFTEM image of the same area showing the Co layers in red and Cu in blue

e) 3D magnetic configuration of the cobalt layers corresponding to the simulated phase showing an anti-parallel coupling between them.


Reference of the paper:

D. Reyes, N. Biziere, B. Warot-Fonrose, T. Wade, and C. Gatel

Magnetic Configurations in Co/Cu Multilayered Nanowires: Evidence of Structural and Magnetic Interplay

Nano Lett.201616 (2), pp 1230–1236

DOI: 10.1021/acs.nanolett.5b04553

February 2016


Synthesis of Ag/Au nanoparticles in superfluid Helium droplets. Chemical maps and the 3D reconstruction of the particles reveal the presence of one or two silver cores and their atomic structure.



G. Haberfehlner, P. Thaler, D. Knez, A. Volk, F. Hofer, W. E. Ernst & G. Kothleitner

Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography

Nature Communications (2015)

DOI: 10.1038/ncomms9779

December 2015

December 2015








Electric potential and axial magnetic B-field component of a Co nanowire. 

a) Volume rendering, the colors correspond to the potential/B-field values. 

b) 2D slices through the 3D data as indicated by the orange boxes in a) 



D. Wolf, L. A. Rodriguez, A. Beche, E.a Javon, L. Serrano, C. Magen, C. Gatel, A. Lubk, H. Lichte, S. Bals, G. Van Tendeloo, A. Fernandez-Pacheco, J. M. De Teresa, E. Snoeck, 

3D magnetic induction maps of nanoscale materials revealed by electron holographic tomography, 

Chemistry of Materials, (2015) 

DOI: 10.1021/acs.chemmater.5b02723

October 2015

Superalloys EDX - Oct 2015

STEM-EDX and FIB-SEM tomography of Allvac 718Plus superalloy

(A. Kruk, G. Cempura, S. Lech, A. Czyrska-Filemonowicz), Archives of Metallurgy and Materials Science, in press

July 2015

 Figure Plasmons 2

Spatial distribution of plasmon modes for a 1100nm long pentatwinned AgAuAg nanowire as measured by monochromated STEM-EELS

Author: Martin Mayer, Leonardo Scarabelli, Katia March, Thomas Altantzis, Moritz Tebbe, Mathieu Kociak, Sara Bals,  F. Javier García de Abajo Andreas Fery, and Luis M. Liz-Marzán

May 2015

 201505 - TOC graph

3D elemental maps from simultaneous EELS and EDS tomography and 3D local voxel spectra of an Al–Si-based alloy

Author: Georg Haberfehlner (TU Graz)

February 2015


 a  February 2015


b  February 2015

Figure caption: Top: (a) strain distribution in an array of strained-silicon devices measured by dark-field electron holography.

Author: Florent Houdellier (CEMES-CNRS Toulouse)

Bottom: (b) strained-semiconductor islands of SiGe grown on Si substrate. Author: Nikolay Cherkashin. Image obtained from the structure grown at Paris-Sud University by the group of authors: D. Bouchier ,H. Redouane, C. Renard, F. Fossard, L. Vincent.


January 2015


January 2015

Caption: 3D visualisation of the porosity in W-based alloy for fusion reactor


Research conducted by FIB-SEM tomography by Adam Gruszczynski and Adam Kruk, International Centre of Electron Microscopy for Materials Science (IC-EM) at the AGH University of Science and Technology in Krakow.



December 2014

 December 2014


Caption: Structure and chemistry of domain walls


a) HAADF-STEM image of the TbMnO3–SrTiO3 interface. b) Detail of a domain wall close to the interface with the substrate, with the proposed atomic model superimposed. c–f) Spectrum image of the domain wall collected simultaneously with the HAADF signal.

From: "Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide". S. Farokhipoor, C. Magén, S. Venkatesan, J. Íñiguez, C.J.M. Daumont, D. Rubi, E. Snoeck, M. Mostovoy, C. de Graaf, A. Müller, M. Döblinger, C. Scheu and B. Noheda. Nature 515, 379–383.

DOI: 10.1038/nature13918



November 2014


November 2014 2


Caption: Results of simulations showing the |Ez| field component of the plasmonic eigenmodes, calculated by 3D-FDTD. 

In all cases, the spatial field distribution is shown at a plane positioned 8 nm above the structure.


From: "On the symmetry and topology of plasmonic eigenmodes in heptamer and hexamer nanocavities" N. Talebi, B. Ögüt, W. Sigle, R. Vogelgesang, P. A. van Aken. Appl. Phys. A (2014) 116:947–954

DOI: 10.1007/s00339-014-8532-y



October 2014


Antidots Image

Caption: "Magnetization map of the remanent magnetic state for a high-density cobalt antidot array by performing Lorentz Microscopy and TIE-reconstruction procedure"


From: "High-resolution imaging of remanent state and magnetization reversal of superdomain structures in high-density cobalt antidot arrays". L. A. Rodríguez, C. Magén, E. Snoeck, C. Gatel, C. Castán-Guerrero, J. Sesé, L. M. García, J. Herrero-Albillos, J. Bartolomé, F. Bartolomé and M. R. Ibarra. Nanotechnology 25 385703




September 2014

 For the first time since the beginning of this section, September 2014 deserves to have two images of the month:


Cation: participants at the ESTEEM2 Scientific Meeting. Oxford, United Kingdom, 25-26 September 2014


Image by: Prof. Rafal E. Dunin-Borkowski



Image of the month September 14


Caption: 3D EDX tomography of the reconstructed volume of a Fe (green) on the Co rods (blue) dumbbell.


From: « CoFe Nanodumbbells: Synthesis, Structure, and Magnetic Properties» N. Liakakos, C. Gatel, T. Blon, T. Altantzis, S. Lentijo-Mozo, C. Garcia-Marcelot, L-M. Lacroix, M. Respaud, S. Bals, G. Van Tendeloo and K. Soulantica, Nano Lett. 2014, 14, 27472754



August 2014



Caption: Creating electron vortices with a Cs corrector. The Cs corrector can be detuned in such a way that electron vortices appear. This only works when a ringlike condensor aperture is used as explained in PRL 111/6 (2013)064801.


Image by: L. Clark, A. Béché, G. Guzzinati, A. Lubk, M. Mazilu, R. Van Boxem and J. Verbeeck.



July 2014

 NaFePO4-NA Vacancies-ESTEEM2 2


Caption: We report the observation of Na atoms/vacancies ordering in NaxFePO4 (x≈0.7) nanoparticles, which are at the origin of the formation of superstructures in NaxFePO4 (x≈0.7) during FePO4 to NaFePO4. HRSTEM image of Na≈2/3FePO4. The arrow line highlights the orientation of the Na−vacancies (black dots).  


Image by: V. Roddatis, R. Arenal, M. Galceran, F. J. Zúñiga, J. M. Pérez-Mato, B. Acebedo, I. Peral, T. Rojo, and M. Casas-Cabanas.



June 2014

 June 2014


Caption: 200 nm-diameter cobalt nanodeposit grown by Focused Electron Beam Induced Deposition on the tip of a cantilever for studies of Ferromagnetic Resonance Force Microscopy.


ESTEEM2 proposal: TA 20130430-deLoubens. Published in Nanofabrication (2014) in press.



May 2014

 May 2014 EDX EELS and HAADF STEM images


Caption: Experimental atomic resolution EDX elemental maps for the h001i direction in SrTiO3 for the (a) Sr K shell, (b) Ti K shell, (c) O K shell, and (d) color composite (Sr red, Ti blue, O green). Overlaid on (d) are the mask areas over which the signal will be integrated. Simultaneously acquired EELS maps for the (e) Sr L2;3 edge, (f) Ti L2;3 edge, (g) O K edge, and (h) color composite. (i) Simultaneously acquired HAADF image, with the projected averaged linescan over the boxed region shown below. Simulations, assuming a Gaussian incoherent effective source with a HWHM of 0.8 Å, are inset in each figure.


Image by G. Kothleitner, M. J. Neish, N. R. Lugg, S. D. Findlay, W. Grogger, F. Hofer, and L. J. Allen



April 2014


Caption: Polarity: HAADF-STEM from [201]ZB′/[112̅0]WZ zone axis and the intensity profile on one dumbbell unit (indicated in (yellow) the top part of the branch, (red) the beginning of the branch, (green) the secondary tetrahedron, and (blue) the border of the initial and the secondary tetrahedra.


Image by R. R. Zamani, M. Ibáñez, M. Luysberg, N. García-Castelló, L. Houben, J.D. Prades, R. Dunin-Borkowski, J. R. Morante, A. Cabot, J. Arbiol



March 2014


Cube MgO chargé1   March 2014


Caption: false color representation of the reconstructed phase with contours (every 0.3 rad).


Image by C. Gatel, A. Lubk, G. Pozzi, E. Snoeck, and M. Hÿtch



February 2014



Caption: The figure shows a combined 3D rendering of these five LSPR components for a 100nm silver nanocube.


Image by Olivia Nicoletti, Francisco de la Peña, Rowan K. Leary, Daniel J. Holland, Caterina Ducati and Paul A. Midgley



January 2014




Left: SEM image of a spiral aperture to create an atomic size vortex beam in a scanning transmission electron microscope. The electron vortex beams created in this way have a diameter of approximately 1 Angstrom, the size of typical orbitals in most atoms.

Image by J. Verbeeck, H. Tian, and A. Béché

Right: Graphical sketch of the spiralling wavefronts typical for vortex waves. The wave can either spiral left or right handed. The central wave unlike the other waves is an ordinary spherical wave with not topological discontinuity along the beam axis.


Image by J. Verbeeck, H. Tian, and P. Schattschneider




December 2013


Caption: Thermal-colored atomic resolution image of Cd loaded zeolite A  with the model superimposed.


Image by Álvaro Mayoral, Jennifer E. Readman and Paul A. Anderson



November 2013


Caption: This image demonstrates how with latest state of the art instrumentation, one can map the individual valence state of Mn atoms in a Mn3O4 crystal making use of subtle changes in the fine structure of the electron energy loss spectrum. The Mn atoms in Mn3O4 are ordered in a lattice of Mn2+ (green) and Mn3+ (red).


Image by H. Tan, S. Turner, E. Yücelen, J. Verbeeck, and G. Van Tendeloo


October 2013



Caption: "Multicolor imaging of GaN Quantum Wells embedded in AlN by nanoCathodoluminescence"


Image by Mathieu Kociak - LPS